
Borel-Cantelli's lemmas: theoretical and practical applications

The goal of this problem is to derive the �rst and second Borel-Cantelli lemmas and to explore various
applications of these results, both within probability theory and in practical contexts. The second Borel-
Cantelli lemma, sometimes referred to as Borel's zero�one law, is particularly noteworthy as it belongs
to the class of zero-one laws, which are powerful tools in probability theory. (We will study Kolmogorov's
zero�one law and its applications in a subsequent problem.)

Preliminaries: lim inf and lim sup of a sequence

Let (vn)n≥0 be a sequence of real numbers. We consider (un)n≥0 and (wn)n≥0 the two sequences of
R = R ∪ {−∞,+∞} de�ned by

∀n ∈ N, un = inf
k≥n

vk, wn = sup
k≥n

vk.

1. Show that (un)n≥0 and (wn)n≥0 are respectively nondecreasing and nonincreasing.

2. Show that (un)n≥0 and (wn)n≥0 converge either to ±∞ or to a �nite real number (i.e. convergence
in R). These limits are respectively denoted by lim infn→+∞ vn and lim supn→+∞ vn.

3. We call limit point of (vn)n≥0 an element ℓ of R such that there exists a subsequence of (vn)n≥0

converging towards ℓ. Show that lim infn→+∞ vn and lim supn→+∞ vn are respectively the smallest
and largest limit points of (vn)n≥0.

4. Show that lim infn→+∞ vn = lim supn→+∞ vn if and only if (vn)n≥0 converges in R.

lim inf and lim sup of a family of events

We consider a probability space (Ω,A,P) and a sequence of events (elements of the σ−algebraA) (An)n≥0.
We also de�ne the following sets:

lim inf
n→+∞

An =
⋃
i≥0

⋂
j≥i

Aj , lim sup
n→+∞

An =
⋂
i≥0

⋃
j≥i

Aj .

5. Show that lim infn→+∞ Ac
n =

(
lim supn→+∞ An

)c
.

6. Show that ω ∈ lim infn→+∞ An if and only if ∃n0 ∈ N,∀n ≥ n0, ω ∈ An.

7. Show that ω ∈ lim supn→+∞ An if and only if {n ∈ N, ω ∈ An} is in�nite.

8. Deduce that lim infn→+∞ An ⊂ lim supn→+∞ An.

9. Show that

P
(
lim inf
n→+∞

An

)
≤ lim inf

n→+∞
P (An) ≤ lim sup

n→+∞
P (An) ≤ P

(
lim sup
n→+∞

An

)
.

First Borel-Cantelli's lemma

Let us assume that
∑∞

n=0 P(An) < +∞.

10. Show that almost surely
∑∞

n=0 1An
< +∞.

11. Deduce that P
(
lim supn→+∞ An

)
= 0.

Second Borel-Cantelli's lemma (also known as Borel's zero-one law)

Let us assume that (An)n≥0 constitutes a family of independent events and that
∑∞

n=0 P(An) = +∞.

12. For i ≤ J ∈ N, show that P
(⋂J

j=i A
c
j

)
=

∏J
j=i (1− P (Aj)).

13. Deduce that P
(⋂

j≥i A
c
j

)
= 0.
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14. Conclude that P (lim infn→+∞ Ac
n) = 0 and P

(
lim supn→+∞ An

)
= 1.

Application of the �rst Borel-Cantelli's lemma: longest sequence of ones in a sequence of
Bernoulli variables

We consider in this section a sequence (Xn)n≥1 of i.i.d. Bernoulli variables with parameter 1
2 . For n ≥ 1,

we de�ne Ln the longest sequence of ones in X1, . . . , Xn, i.e.

Ln = sup{l ∈ {1, . . . , n}|∃i ∈ {1, . . . , n− l + 1}, Xi = . . . = Xi+l−1 = 1}.

15. For k ∈ {1, . . . , n}, show that

{Ln ≥ k} =

n−k+1⋃
i=1

{Xi = . . . = Xi+k−1 = 1}.

16. Deduce that ∀k ∈ N∗,P(Ln ≥ k) ≤ n
2k
.

17. Let ϵ > 0. For j ≥ 1, let us consider nj = 1 +
⌊
j

2
ϵ

⌋
and kj = 1 +

⌊
(1 + ϵ)

log(nj)
log(2)

⌋
. What is the

nature of the series
∑

j≥1 P(Lnj
≥ kj)?

18. Use the �rst Borel-Cantelli's lemma to deduce that almost surely lim supj→+∞
Lnj

log(nj)
≤ 1+ϵ

log(2) .

19. Prove then that almost surely lim supn→+∞
Ln

log(n) ≤
1

log(2) .

20. For m ∈ {1, . . . , n}, show that

{Ln < m} ⊂
⌊ n

m⌋−1⋂
i=0

{Xim+1 = . . . = X(i+1)m = 1}c.

21. Deduce that ∀m ∈ {1, . . . , n},P(Ln < m) ≤
(
1− 1

2m

)⌊ n
m⌋

.

22. Let ϵ > 0. For n ≥ 1, let us consider mn = 1 +
⌊
(1− ϵ) log(n)log(2)

⌋
. Prove that mn ≤ n and study the

nature of the series
∑

n≥1 P(Ln < mn).

23. Use the �rst Borel-Cantelli's lemma to deduce that almost surely lim infn→+∞
Ln

log(n) ≥
1

log(2) .

24. Conclude that almost surely limn→+∞
Ln

log(n) =
1

log(2) .

25. (Bonus) � Illustrate this result with a graph obtained thanks to a Python code.

(Bonus) � Application of the second Borel-Cantelli's lemma: there is no �natural�
probability measure on N

The goal of this bonus section is to prove a surprising result: there is no probability measure P on N such
that the probability of the set of multiples of d is 1

d for all d ∈ N∗, i.e. P(dN) = 1
d .

For this purpose, let us assume that there is such a probability measure. In what follows, we denote by
(pn)n≥1 the sequence of prime numbers.

26. For m ≥ 1, let us de�ne nm = sup{n|pn ≤ m}. Prove that

{1, . . . ,m} ⊂
{
pϵ11 . . . p

ϵnm
nm k2|k ∈ N∗, ϵ1, . . . , ϵnm

∈ {0, 1}
}
.

27. Prove that
m∑
i=1

1

i
≤

nm∏
n=1

(
1 +

1

pn

) m∑
k=1

1

k2

28. Deduce that

∃C ∈ R, ∀m ≥ 1,

nm∑
n=1

1

pn
≥ log(log(m))− C.
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29. Conclude on the nature of the series
∑

n≥1
1
pn
.

30. Prove that the events (pnN)n≥1 are independent, i.e.

∀k ≥ 1, ∀1 ≤ n1 < . . . < nk,P

 k⋂
j=1

pnj
N

 =

k∏
j=1

P(pnj
N).

31. What is the nature of the series
∑

n≥1 P(pnN)?

32. Conclude using the second Borel-Cantelli's lemma.
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