
Gaussian vectors, Cochran's theorem, and applications to

statistics

Gaussian variables are ubiquitous in probability and statistics. In fact, they can be encountered everywhere
from thermodynamics to optics, to economics, to �nance, and so on. In this problem, we introduce the
concept of Gaussian vectors and introduce several classical distributions associated with the Gaussian
one: Gamma, χ2 and Student-t. The problem is guided by the goal of proving Cochran's theorem and
that of presenting the most classical Student-t test: the location test for a Gaussian i.i.d. sample with
unknown variance.

The Gamma function

Let us de�ne the function Γ by

Γ : x ∈ R∗
+ 7→

∫ +∞

0

tx−1e−tdt.

1. Prove that Γ is well de�ned and that ∀x ∈ R∗
+,Γ(x+ 1) = xΓ(x).

2. Prove that ∀n ∈ N∗,Γ(n) = (n− 1)!.

3. Prove that ∀n ∈ N,Γ
(
n+ 1

2

)
= (2n)!

22nn!

√
π.

Classical distributions: Gaussian, Gamma, χ2, and Student-t

Let µ ∈ R and σ ∈ R+. We say that a real-valued random variable X follows a Gaussian distribution
N (µ, σ2) if there exists a random variable Z with probability density function

t 7→ 1√
2π

e−
t2

2

such that X = µ+ σZ.

Let α, λ ∈ R∗
+. We say that a real-valued random variable X follows a Gamma distribution Γ(α, λ) if it

has the following probability density function:

t 7→ 1t>0
1

Γ(α)
λαtα−1e−λt.

4. Let α, β, and λ be 3 positive real numbers. Prove that if X and Y are two independent random
variables with respective distributions Γ(α, λ) and Γ(β, λ) then X + Y follows a Γ(α + β, λ)
distribution.

5. Let X be a N (0, 1) random variable. What is the distribution of X2?

6. Let X1, . . . , Xn be n i.i.d N (0, 1) random variables. Prove that X2
1 + · · · + X2

n follows a Γ
(
n
2 ,

1
2

)
distribution.

Remark-De�nition: The distribution Γ
(
n
2 ,

1
2

)
is called χ2

n (and reads �kai� square with n degrees of
freedom).
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7. Let Z be a N (0, 1) random variable. Let X be a random variable with a χ2
n distribution (for some

n ∈ N∗). If X and Z are independent, prove that Z√
X
n

has the following probability density function:

fn : t 7→ 1√
nπ

Γ(n+1
2 )

Γ(n2 )

(
1 +

t2

n

)−n+1
2

.

Remark-De�nition: The above probability density function de�nes a distribution called Student-t distribution
with n degrees of freedom).

8. Prove that (fn)n∈N∗ converges pointwise towards the probability density function of a N (0, 1)
random variable.

Characteristic function

For what follows, we recall the following:

� For any Rn-valued random variable X, the characteristic function of X is the function

ϕX : ξ ∈ Rd 7→ E[exp(iξ′X)],

where ′ is the transposition operator.

Remark: If X is R-valued, we rather write ϕX : t ∈ R 7→ E[exp(itX)].

� If X and Y are two Rn-valued random variables, ϕX = ϕY implies that X and Y have the same
distribution.

Let Z be a Gaussian N (0, 1) random variable.

9. Prove that ϕZ is a function of class C1 and that ∀t ∈ R, ϕ′
Z(t) = −tϕZ(t).

10. Deduce that ∀t ∈ R, ϕZ(t) = exp
(
− t2

2

)
.

Let X be a Gaussian N (µ, σ2) random variable.

11. Prove that ∀t ∈ R, ϕX(t) = exp
(
itµ− 1

2σ
2t2

)
.

Let X and Y be two independent Gaussian random variables.

12. Prove that any linear combination of X and Y is Gaussian.

Gaussian vectors

Let n ∈ N∗ and let us consider a Rn-valued random variable. We say that X is a Gaussian vector if and
only if ∀ξ ∈ Rn, ξ′X is a Gaussian variable.

IfX = (X1, . . . , Xn) is a Rn-valued Gaussian vector, we denote by µX the vector E[X] = (E[X1], . . . ,E[Xn])
′

and by ΣX the matrix (Cov(Xi, Xj))1≤i,j≤n.

13. Prove that ifX = (X1, . . . , Xn) is a Rn-valued Gaussian vector, then ∀i ∈ {1, . . . , n},Xi is Gaussian.
Is the reciprocal true?
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Hint: For the reciprocal, consider X and ϵX where X a Gaussian N (0, 1) random variable and ϵ a
random variable with P(ϵ = −1) = P(ϵ = 1) = 1

2 .

14. LetX1, . . . , Xn be n independent R-valued Gaussian random variable. Prove thatX = (X1, . . . , Xn)
is a Rn-valued Gaussian vector.

Let X be a Rn-valued Gaussian vector.

15. Let ξ ∈ Rn. Show that E[ξ′X] = ξ′µX and V[ξ′X] = ξ′ΣXξ.

16. Deduce that ϕX : ξ ∈ Rn 7→ exp
(
iξ′µX − 1

2ξ
′ΣXξ

)
.

17. Prove that ΣX is a positive semide�nite symmetric matrix.

18. Let m ∈ N∗. Prove that for any matrix A ∈ Mm,n, AX is a Rm-valued Gaussian vector. Prove that
µAX = AµX and ΣAX = AΣXA′.

Let p ∈ N \ {0, 1}. Let n1, . . . , np ∈ N∗ and let n = n1 + . . . + np. Assume that there exists p positive
semide�nite symmetric matrices Σ1, . . . ,Σp of respective size n1, . . . , np such that

ΣX =


Σ1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 Σp

 .

19. Prove that the random variables

(X1, . . . , Xn1), (Xn1+1, . . . , Xn1+n2), . . . , (Xn1+...+np−1+1, . . . , Xn)

are independent Gaussian vectors.

Cochran' theorem

Let n ∈ N∗ and let X1, . . . , Xn be n independent N (0, 1) Gaussian random variables.

Let p ∈ N∗ and let F1, . . . , Fp be p vector subspaces of Rn with ∀i ̸= j, Fi ⊥ Fj .

Let us denote by P1, . . . , Pp the matrices (in the canonical basis) of the orthogonal projections on
F1, . . . , Fp respectively.

20. Prove that P1X, . . . , PpX are independent Gaussian vectors with ∀i ∈ {1, . . . , p}, µPiX = 0 and
ΣPiX = Pi.

Hint: consider AX where A =
(
P1 · · · Pp

)′
.

21. Prove that ∀i ∈ {1, . . . , p}, ∥PiX∥2 follows a χ2
dim(Fi)

distribution.
Hint: Diagonalize Pi.

Application to statistics

Let n ∈ N∗ and let X1, . . . , Xn be n independent N (µ, σ2) Gaussian random variables. Let us de�ne
X = (X1, . . . , Xn)

′.
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Let us consider

Xn =
X1 + . . .+Xn

n
and σ̂n =

√√√√ 1

n− 1

n∑
i=1

(Xi −Xn)2.

Let u = (1, . . . , 1)′ ∈ RN . Let F = span(u) and let PF and PF⊥ be the matrices (in the canonical basis)
of the orthogonal projectors on F and F⊥ respectively.

22. Prove that PFX = Xnu.

23. Deduce that (n− 1)σ̂2
n = ∥PF⊥X∥2.

24. Deduce that
(n−1)σ̂2

n

σ2 follows a χ2
n−1 distribution. Deduce the value of E[σ̂2

n].

25. Prove that
√
nXn−µ

σ̂n
follows a Student-t distribution with n− 1 degrees of freedom.

26. How can we exploit the previous question to build a location test where H0 : µ = 0 and H1 : µ ̸= 0?
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