
Almost sure convergence vs. convergence in probability: some

niceties

The goal of this problem is to develop a deeper understanding of the subtle relationship between almost
sure convergence and convergence in probability. We will prove most of the classical results concerning
these two modes of convergence, and also present a slightly less known result: the equivalence of almost
sure convergence and convergence in probability for series of independent random variables.

Applications of the results established in this problem are ubiquitous in probability (see other problem
sets for concrete examples).

De�nitions

We consider a probability space (Ω,A,P) and a sequence of random variables (Xn)n∈N de�ned on this
probability space. All random variables in this problem are assumed to be real-valued, but most reasonings
would apply to more general random variables by using the appropriate norms.

We say that (Xn)n∈N converges in probability towards a random variable X (Xn
P−−−−−→

n→+∞
X) if and

only if
∀ϵ > 0, lim

n→+∞
P(|Xn −X| > ϵ) = 0.

We say that (Xn)n∈N converges almost surely towards a random variable X (Xn
a.s.−−−−−→

n→+∞
X) if and

only if

P
({

ω ∈ Ω

∣∣∣∣ lim
n→+∞

Xn(ω) = X(ω)

})
= 1.

Convergence in probability vs. almost sure convergence: the basics

1. Using Lebesgue's dominated convergence theorem, show that if (Xn)n∈N converges almost surely
towards X, then it converges in probability towards X.

Let us consider a sequence of independent random variables (Zn)n∈N where P(Zn = 0) = 1 − 1
n+1 and

P(Zn = 1) = 1
n+1 .

2. Show that (Zn)n∈N converges in probability towards Z = 0.

3. Use Borel-Cantelli's second lemma to prove that P(lim supn→+∞ Zn = 1) = 1.

4. Does (Zn)n∈N converge almost surely towards Z = 0?

Completeness

Let us consider the space L0(Ω,A,P) of random variables de�ned on the probability space (Ω,A,P) (we
identify random variables that are equal almost surely).

For X,Y ∈ L0(Ω,A,P), we de�ne d(X,Y ) = E[min(|X − Y |, 1)].

5. Prove that d(·, ·) de�nes a distance on L0(Ω,A,P).
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6. Prove that Xn
P−−−−−→

n→+∞
X if and only if limn→+∞ d(Xn, X) = 0.

Let us consider a Cauchy sequence (Xn)n∈N in L0(Ω,A,P) equipped with the distance d(·, ·), i.e.

∀ϵ > 0, ∃n ∈ N,∀p, q ≥ n, d(Xp, Xq) ≤ ϵ.

7. Prove that there exists a subsequence (Xϕ(n))n such that

∀n ∈ N, E
[
min

(
|Xϕ(n+1) −Xϕ(n)|, 1

)]
≤ 1

2n
.

8. Deduce that almost surely
∑+∞

n=0 |Xϕ(n+1) −Xϕ(n)| < +∞.

9. Deduce that (Xϕ(n))n converges almost surely towards X = Xϕ(0) +
∑+∞

n=0

(
Xϕ(n+1) −Xϕ(n)

)
.

10. Prove that (Xn)n∈N converges in probability towards X.

11. Deduce that L0(Ω,A,P) equipped with the distance d(·, ·) is complete.

Extraction of a subsequence

Let us consider a sequence of random variables (Xn)n∈N converging in probability towards a random
variable X.

12. By using similar arguments as above, prove that there exists a subsequence (Xϕ(n))n that converges
almost surely towards X.

Extraction of sub-subsequences and consequences

13. Show that (Xn)n∈N converges in probability towards X if and only if from any subsequence of
(Xn)n∈N we can extract a subsequence converging almost surely towards X.
Hint: one way is straightforward, the other can be addressed by contradiction.

14. Deduce that if (Xn)n∈N converges in probability towards X, then for all continuous function f ,
(f(Xn))n converges in probability towards f(X). Prove that it is su�cient to have f continuous at
point a if X = a almost surely.

15. Deduce also that if (Xn)n∈N and (Yn)n∈N converge in probability towardsX and Y respectively, then
(XnYn)n∈N converges in probability towards XY , and, for all a, b ∈ R, (aXn + bYn)n∈N converges
in probability towards aX + bY .

Some additional characterizations

For a sequence of random variables (Xn)n∈N and a random variable X, we de�ne for all k,m ∈ N the event
Am

k ((Xn)n∈N, X) =
{
|Xk −X| > 1

2m

}
. We also de�neAm((Xn)n∈N, X) = lim supk→+∞ Am

k ((Xn)n∈N, X).

16. Show that {ω ∈ Ω|Xk(ω) does not converge towards X(ω)} =
⋃

m∈N Am((Xn)n∈N, X).

17. Deduce that

Xn
a.s.−−−−−→

n→+∞
X ⇐⇒ P

( ⋃
m∈N

Am((Xn)n∈N, X)

)
= 0 ⇐⇒ ∀m ∈ N,P(Am((Xn)n∈N, X)) = 0.
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Let us consider a sequence of random variables (Xn)n∈N and a variable X.

18. Prove the following assertion:

∀ϵ > 0,
∑
n∈N

P(|Xn −X| > ϵ) converges =⇒ Xn
a.s.−−−−−→

n→+∞
X.

19. Find a counterexample to the reciprocal.

20. Show however that the reciprocal is true if the random variables of the sequence (Xn)n∈N are
independent.

Let us consider a sequence of random variables (Xn)n∈N and a random variable X.

21. Show that Am((Xn)n∈N, X) =
⋂

n∈N
{
supk≥n |Xk −X| > 1

2m

}
.

22. Deduce that Xn
a.s.−−−−−→

n→+∞
X if and only if supk≥n |Xk −X| P−−−−−→

n→+∞
0.

23. Deduce that (Xn)n∈N converges almost surely if and only if supk≥n |Xk −Xn|
P−−−−−→

n→+∞
0.

Hint: to prove that (Xn)n∈N converges almost surely, show that almost surely (Xn(ω))n∈N is a

Cauchy sequence, or use lim infn→+∞ Xn and lim supn→+∞ Xn.

Series of independent variables

Let us consider a sequence of independent random variables (Xn)n∈N. Let us de�ne Sn =
∑n

k=0 Xk. We
assume that (Sn)n∈N converges in probability towards a random variable S.

Let us consider ϵ > 0.

For n,N ∈ N with N > n, let us introduce τn,N = inf {k ∈ {n+ 1, . . . , N}, |Sk − Sn| > ϵ}.

24. Prove that for all n,N ∈ N with N > n,

P
(
|SN − Sn| >

ϵ

2

)
≥

N∑
k=n+1

P
(
|SN − Sk| ≤

ϵ

2
, τn,N = k

)
.

25. Deduce that for all n,N ∈ N with N > n,

P
(
|SN − Sn| >

ϵ

2

)
≥ inf

n<j≤N
P
(
|SN − Sj | ≤

ϵ

2

)
P
(

sup
n<k≤N

|Sk − Sn| > ϵ

)
.

26. Prove then that

∀α > 0, ∃n0 ∈ N,∀N > n ≥ n0,P
(

sup
n<k≤N

|Sk − Sn| > ϵ

)
≤ α.

27. Deduce that

∀α > 0, ∃n0 ∈ N,∀n ≥ n0,P
(
sup
k≥n

|Sk − Sn| > ϵ

)
≤ α.

28. Deduce that (Sn)n∈N converges almost surely towards S.
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The last result states that for a sequence of independent real-valued random variables (Xn)n∈N, the
convergence in probability of

∑
n≥0 Xn implies its almost sure convergence. Therefore, the two modes of

convergence are equivalent for series of independent random variables.

It is noteworthy that another equivalent mode of convergence for series of independent random variables
is that of convergence in distribution. Classical proofs of this fact involve characteristic functions.
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