
Uniform integrability: main theorems and a result by de la

Vall�ee Poussin

The goal of this problem is to explore di�erent modes of convergence in probability theory, speci�cally
convergence in probability and convergence in Lp. In particular, the problem introduces the notion of
uniform integrability, which allows for a generalization of Lebesgue's dominated convergence theorem. It
also presents the characterization of uniform integrability due to the Belgian mathematician Charles-Jean
de la Vall�ee Poussin.

Applications of the results obtained in this problem are ubiquitous in probability (see other problem sets
for concrete examples).

De�nitions

We consider a probability space (Ω,A,P) and a sequence of random variables (Xn)n∈N de�ned on this
probability space. All random variables in this problem are assumed to be real-valued, but most reasonings
would apply to more general random variables.

We say that (Xn)n∈N converges in probability towards a random variable X (Xn
P−−−−−→

n→+∞
X) if and

only if
∀ϵ > 0, lim

n→+∞
P(|Xn −X| > ϵ) = 0.

We say that (Xn)n∈N converges in Lp (p ∈ [1,+∞)) towards a random variable X (Xn
Lp

−−−−−→
n→+∞

X) if

and only if
lim

n→+∞
E [|Xn −X|p] = 0.

We also recall the classical notion of almost sure convergence: (Xn)n∈N converges almost surely

towards a random variable X (Xn
a.s.−−−−−→

n→+∞
X) if and only if

P
({

ω ∈ Ω

∣∣∣∣ lim
n→+∞

Xn(ω) = X(ω)

})
= 1.

Convergence in probability vs. convergence in Lp: the basics

In what follows, p will always be a real number in [1,+∞).

1. Prove Markov's inequality: ∀a > 0, ∀Z ∈ Lp,P(|Z| ≥ a) ≤ E[|Z|p]
ap .

2. Deduce that if a sequence of random variables (Xn)n∈N converges in Lp towards a random variableX,
then (Xn)n∈N converges also in probability towards X.

3. Let us consider a sequence of random variables (Xn)n∈N such that P(Xn = 0) = 1 − 1
2np and

P(Xn = 2n) = 1
2np . Show that (Xn)n∈N converges in probability towards X = 0 but not in Lp.

Convergence in probability vs. convergence in Lp: the concept of uniform integrability

We say that a set X of random variables de�ned on (Ω,A,P) is uniformly integrable if and only if

lim
a→+∞

sup
X∈X

E[|X|1|X|>a] = 0.

4. Let X be a random variable in L1. Show that X = {X} is uniformly integrable.
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5. Show that any �nite set of L1 random variables is uniformly integrable.

6. Show that if X is such that supX∈X |X| ∈ L1 then X is uniformly integrable.

Let X be uniformly integrable.

7. Show that X is bounded in L1, i.e., supX∈X E[|X|] < +∞.

8. Show that X is uniformly absolutely continuous, i.e.,

∀ϵ > 0,∃α > 0, ∀A ∈ F ,P(A) ≤ α ⇒ ∀X ∈ X,E[|X|1A] ≤ ϵ.

Let us now consider a set X of random variables de�ned on (Ω,A,P) such that X is bounded in L1 and
uniformly absolutely continuous.

9. Show that X is uniformly integrable.

Let us now prove the main result of this section, i.e., for any sequence of random variables (Xn)n∈N in
Lp and any random variable X, we have:

Xn
Lp

−−−−−→
n→+∞

X ⇐⇒ Xn
P−−−−−→

n→+∞
X and {|Xn|p|n ∈ N} is uniformly integrable.

We start with the case p = 1. Let us therefore consider a sequence of random variables (Xn)n∈N in L1

and a random variable X.

10. Show that if Xn
L1

−−−−−→
n→+∞

X then X is in L1. Deduce that {|Xn||n ∈ N} is bounded in L1.

11. Show that if Xn
L1

−−−−−→
n→+∞

X then {|Xn||n ∈ N} is uniformly absolutely continuous.

12. Conclude for the ⇒ part of the above result when p = 1.

13. Let us now assume that the sequence (Xn)n∈N converges in probability towards X and that
{|Xn||n ∈ N} is uniformly integrable. Prove that (Xn)n∈N converges in L1 towards X (this is
the ⇐ part of the above result when p = 1).

Let us now consider the general case p ∈ [1,+∞).

14. Prove that ∀x, y ∈ R, |x+ y|p ≤ 2p−1(|x|p + |y|p).

15. Use the above inequality and the result for p = 1 to obtain the general result.

Complements on uniform integrability: the characterization of de la Vall�ee Poussin

Let us consider a measurable function φ : R+ → R+ such that limx→+∞ φ(x) = +∞. Let us consider a
set X of random variables de�ned on (Ω,A,P) such that supX∈X E[|X|φ(|X|)] < +∞.

16. Prove that X is bounded in L1.

17. Prove that X is uniformly absolutely continuous.

18. Conclude.

19. Deduce that if a sequence of random variables (Xn)n∈N converges in probability towards a random
variable X and if supn∈N E[|Xn|p] < +∞, for some p ∈ (1,+∞), then (Xn)n∈N converges in Lr

towards X for all r ∈ [1, p).

20. Prove the result of previous question directly using H�older inequality.
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Let us now consider a uniformly integrable set X.

21. Build an increasing sequence of real numbers (an)n∈N such that limn→+∞ an = +∞ and for all
n ∈ N, supX∈X E(|X|1|X|≥an

) ≤ 1
2n .

22. Prove that the function φ : x ∈ R+ 7→ 1x>0
1
x

∑∞
n=0(x − an)+ is measurable, �nite, and such that

limx→+∞ φ(x) = +∞.

23. Prove that supX∈X E[|X|φ(|X|)] < +∞.

24. Conclude.

Remark: Another characterization of uniform integrability is Dunford-Pettis theorem. It uses concepts of

weak topology.
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