Dynkin's π - λ theorem and Kolmogorov's zero-one law

The second Borel-Cantelli lemma states that the probability of the limit superior of a countable family of independent events is either 0 or 1. In probability theory, several results of this kind are known as *zero-one laws*.

In this problem, we derive one of the most famous zero-one laws: **Kolmogorov's zero-one law**. Roughly speaking, it states that for a sequence of independent random variables, any *tail event* – that is, an event independent of any finite subset of the sequence – has probability either 0 or 1.

To prove Kolmogorov's zero-one law, we briefly review the basics of σ -algebras and prove the classical **Dynkin's** π - λ **theorem**, also sometimes known in France as the "lemme de la classe monotone".

A few applications of Kolmogorov's zero-one law are presented at the end of the problem.

λ -systems, π -systems, σ -algebras and Dynkin's π - λ theorem

We consider a set Ω .

We recall that $\mathcal{B} \subset \mathcal{P}(\Omega)$ is a σ -algebra (on Ω) if and only if

- $\Omega \in \mathcal{B}$,
- $\forall B \in \mathcal{B}, B^c = \Omega \setminus B \in \mathcal{B},$
- $\forall (B_n)_{n \in \mathbb{N}} \in \mathcal{B}^{\mathbb{N}}, \cup_{n \in \mathbb{N}} B_n \in \mathcal{B}.$

We say that $\mathcal{B} \subset \mathcal{P}(\Omega)$ is a π -system (on Ω) if and only if

- $\mathcal{B} \neq \emptyset$,
- $\forall B_1, B_2 \in \mathcal{B}, B_1 \cap B_2 \in \mathcal{B}.$

We say that $\mathcal{B} \subset \mathcal{P}(\Omega)$ is a λ -system¹ (on Ω) if and only if

- $\Omega \in \mathcal{B}$,
- $\forall B_1, B_2 \in \mathcal{B}, B_1 \subset B_2 \implies B_2 \setminus B_1 \in \mathcal{B},$
- $\forall (B_n)_{n \in \mathbb{N}} \in \mathcal{B}^{\mathbb{N}}, \forall n \in \mathbb{N}, B_n \subset B_{n+1} \implies \bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}.$
- 1. Show that a σ -algebra is both a π -system and a λ -system.
- 2. Show that if $\mathcal{B} \subset \mathcal{P}(\Omega)$ is both a π -system and a λ -system, then it is a σ -algebra.
- 3. Let $\mathcal{C} \subset \mathcal{P}(\Omega)$. Show that the smallest λ -system and the smallest σ -algebra containing \mathcal{C} are nonempty and respectively given by²

$$\lambda(\mathcal{C}) = \bigcap_{\mathcal{B}: \lambda \text{-system}, \mathcal{B} \supset \mathcal{C}} \mathcal{B} \quad \text{and} \quad \sigma(\mathcal{C}) = \bigcap_{\mathcal{B}: \sigma \text{-algebra}, \mathcal{B} \supset \mathcal{C}} \mathcal{B}.$$

Let $\mathcal{C} \subset \mathcal{P}(\Omega)$ be a π -system.

- 4. Let $C \in \mathcal{C}$. Prove that $\{A \in \mathcal{P}(\Omega), A \cap C \in \lambda(\mathcal{C})\}$ is a λ -system.
- 5. Deduce that $\forall B \in \lambda(\mathcal{C}), \forall C \in \mathcal{C}, B \cap C \in \lambda(\mathcal{C}).$

 $^{^{1}\}lambda$ -systems are also called Dynkin systems.

²"Smallest" here is for the order associated with the inclusion of sets.

- 6. Let $B \in \lambda(\mathcal{C})$. Prove that $\{A \in \mathcal{P}(\Omega), A \cap B \in \lambda(\mathcal{C})\}$ is a λ -system.
- 7. Deduce that $\lambda(\mathcal{C})$ is a π -system and that $\lambda(\mathcal{C}) = \sigma(\mathcal{C})$.
- 8. Let $\mathcal{C} \subset \mathcal{D} \subset \mathcal{P}(\Omega)$ with \mathcal{C} a π -system and \mathcal{D} a λ -system. Prove that $\sigma(\mathcal{C}) \subset \mathcal{D}^{3}$.

Kolmogorov's zero-one law

We consider a probability space $(\Omega, \mathcal{A}, \mathbb{P})$.

We recall that, for a random variable X, $\sigma(X)$ denotes the smallest σ -algebra such that X is $\sigma(X)$ -measurable.

We also recall that two σ -algebras $\mathcal{B}_1, \mathcal{B}_2 \subset \mathcal{A}$ are independent if and only if

 $\forall B_1 \in \mathcal{B}_1, \forall B_2 \in \mathcal{B}_2, \mathbb{P}(B_1 \cap B_2) = \mathbb{P}(B_1)\mathbb{P}(B_2).$

Let $\mathcal{B}_1, \mathcal{B}_2 \subset \mathcal{A}$ be two σ -algebras. Let \mathcal{C}_1 and \mathcal{C}_2 be two π -systems such that $\mathcal{B}_1 = \sigma(\mathcal{C}_1)$ and $\mathcal{B}_2 = \sigma(\mathcal{C}_2)$.

Assume that

$$\forall C_1 \in \mathcal{C}_1, \forall C_2 \in \mathcal{C}_2, \mathbb{P}(C_1 \cap C_2) = \mathbb{P}(C_1)\mathbb{P}(C_2).$$

- 9. Let $C_2 \in \mathcal{C}_2$. Prove that $\{B_1 \in \mathcal{B}_1, \mathbb{P}(B_1 \cap C_2) = \mathbb{P}(B_1)\mathbb{P}(C_2)\}$ is a λ -system.
- 10. Deduce that $\forall B_1 \in \mathcal{B}_1, \forall C_2 \in \mathcal{C}_2, \mathbb{P}(B_1 \cap C_2) = \mathbb{P}(B_1)\mathbb{P}(C_2).$
- 11. Let $B_1 \in \mathcal{B}_1$. Prove that $\{B_2 \in \mathcal{B}_2, \mathbb{P}(B_1 \cap B_2) = \mathbb{P}(B_1)\mathbb{P}(B_2)\}$ is a λ -system.
- 12. Deduce that \mathcal{B}_1 and \mathcal{B}_2 are independent.

Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of independent random variables defined on $(\Omega, \mathcal{A}, \mathbb{P})$.

Let us define:

- for $n \leq m \in \mathbb{N}$, $\mathcal{B}_{n,m} = \sigma(X_n, \ldots, X_m)$,
- for $n \in \mathbb{N}$, $\mathcal{B}_{\leq n} = \mathcal{B}_{0,n}$,
- for $n \in \mathbb{N}$, $\mathcal{C}_{>n} = \bigcup_{m>n} \mathcal{B}_{n+1,m}$,
- for $n \in \mathbb{N}$, $\mathcal{B}_{>n} = \sigma(\mathcal{C}_{>n})$,
- $\mathcal{B}_{\infty} = \bigcap_{n \in \mathbb{N}} \mathcal{B}_{>n}$.
- 13. Prove that $\forall n \in \mathbb{N}, C_{>n}$ is a π -system.
- 14. Prove that $\mathcal{B}_{\leq n}$ and $\mathcal{B}_{>n}$ are independent for all $n \in \mathbb{N}$.
- 15. Deduce that $\forall n \in \mathbb{N}, \mathcal{B}_{\leq n}$ and \mathcal{B}_{∞} are independent.
- 16. Deduce that $\mathcal{B}_{>0}$ and \mathcal{B}_{∞} are independent.
- 17. Conclude that \mathcal{B}_{∞} is independent of itself.
- 18. Deduce Kolmogorov's zero-one law:

$$\forall B \in \mathcal{B}_{\infty}, \mathbb{P}(B) \in \{0, 1\}.$$

³This result is called Dynkin's π - λ theorem.

Classical applications of Kolmogorov's zero-one law

Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of independent random variables defined on $(\Omega, \mathcal{A}, \mathbb{P})$.

- 19. Show that $\mathbb{P}(\{\omega \in \Omega, \lim_{n \to +\infty} X_n(\omega) \text{ exists}\})$ is either 0 or 1.
- 20. If $(X_n)_{n \in \mathbb{N}}$ converges almost surely, show that the limit is a constant.
- 21. Show that $\mathbb{P}(\{\omega \in \Omega, \sum_{n \in \mathbb{N}} X_n(\omega) \text{ converges}\})$ is either 0 or 1.