
From weak to strong: around the law of large numbers

The expression �law of large numbers,� coined by Poisson, refers to a broad class of results stating �
under various assumptions � that the running average of a sequence of random variables converges (in
some sense) to the expected value. The diversity of these results stems from the assumptions made on
the random variables (e.g., independence, existence of moments) and the type of convergence considered:
we speak of the weak law of large numbers when the convergence is in probability, and of the strong law

of large numbers when the convergence is almost sure.

Typical undergraduate students are often familiar with proofs of the weak law of large numbers for i.i.d.
random variables in L2, and the strong law of large numbers for i.i.d. random variables in L4. However,
although the general result of almost sure and L1 convergence for i.i.d. random variables in L1 is frequently
stated in undergraduate courses, it is rarely proved in detail.

The goal of this problem is to �ll that gap, by providing a simple proof based on Kolmogorov's zero-one
law.

Weak law of large numbers for L2 i.i.d. variables

Let (Xn)n∈N∗ be a sequence of real-valued L2 i.i.d. random variables de�ned on (Ω,A,P) with (common)
expected value and variance denoted respectively by µ and σ2. Let us denote by (Sn)n∈N the sequence
de�ned by

S0 = 0 and ∀n ∈ N∗, Sn =

n∑
k=1

Xk.

1. Let ϵ > 0. Prove that for all n ∈ N∗,

P
(∣∣∣∣Sn

n
− µ

∣∣∣∣ > ϵ

)
≤ σ2

nϵ2
.

2. Deduce that
(
Sn

n

)
n∈N∗ converges in probability toward µ.

Strong law of large numbers for L4 i.i.d. variables

Let (Xn)n∈N∗ be a sequence of real-valued L4 i.i.d. random variables de�ned on (Ω,A,P) with (common)
expected value equal to 0. Let us denote by (Sn)n∈N the sequence de�ned by

S0 = 0 and ∀n ∈ N∗, Sn =

n∑
k=1

Xk.

3. Prove that for all n ∈ N∗,
E[S4

n] = nE[X4
1 ] + 3n(n− 1)E[X2

1 ]
2.

4. Let ϵ > 0. Show that there exists a constant C > 0 such that

P
(
|Sn|
n

> ϵ

)
≤ C

n2ϵ4
.

5. Use Borel-Cantelli's lemma to deduce that
(
Sn

n

)
n∈N∗ converges almost surely towards 0.

Let (Xn)n∈N∗ be a sequence of real-valued L4 i.i.d. random variables de�ned on (Ω,A,P) with (common)
expected value denoted by µ. Let us denote by (Sn)n∈N the sequence de�ned by

S0 = 0 and ∀n ∈ N∗, Sn =

n∑
k=1

Xk.
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6. Prove that
(
Sn

n

)
n∈N∗ converges almost surely towards µ.

Strong law of large numbers for L1 i.i.d. variables

Let (Xn)n∈N∗ be a sequence of real-valued L1 i.i.d. random variables de�ned on (Ω,A,P) with (common)
expected value denoted by µ. Let us denote by (Sn)n∈N the sequence de�ned by

S0 = 0 and ∀n ∈ N∗, Sn =

n∑
k=1

Xk.

Let a > µ. Let us introduce for all m ∈ N:

Mm = max
0≤n≤m

(Sn − na) and M ′
m = max

0≤n≤m
(Sn+1 −X1 − na).

7. Show that ∀m ∈ N, Mm and M ′
m are two L1 random variables with the same distribution.

8. Show that there exist two random variables M and M ′ with values in R∪{+∞} such that (Mm)m
(resp. (M ′

m)m) converges almost surely towards M (resp. M ′).

9. Show that M and M ′ have the same distribution.

10. Use Kolmogorov's zero-one law to prove that either M = +∞ almost surely or M < +∞ almost
surely.

11. Prove that ∀m ∈ N,Mm+1 = M ′
m −min(a−X1,M

′
m).

12. Deduce that ∀m ∈ N,E[min(a−X1,M
′
m)] ≤ 0 and E[min(a−X1,M)] = E[min(a−X1,M

′)] ≤ 0.

13. Reason by contradiction to prove that M < +∞ almost surely.

14. Deduce that lim supn→+∞
Sn

n ≤ a almost surely.

15. Conclude that lim supn→+∞
Sn

n ≤ µ almost surely.

16. Prove then the strong law of large numbers:
(
Sn

n

)
n∈N∗ converges almost surely towards µ.

Sche��e's lemma and the convergence in L1

Let (Zn)n be a sequence of nonnegative random variables. Assume that (Zn)n converges almost surely
towards a random variable Z such that E[Z] < +∞. Assume also that limn→+∞ E[Zn] = E[Z].

17. Prove that limn→+∞ E[min(Zn, Z)] = E[Z].

18. Show that ∀x, y ∈ R, |x− y| = x+ y − 2min(x, y).

19. Deduce Sche��e's lemma: (Zn)n converges in L1 towards Z.

Let (Xn)n∈N∗ be a sequence of real-valued L1 i.i.d. random variables de�ned on (Ω,A,P) with (common)
expected value denoted by µ.

20. Using the same notations as above, prove that
(
Sn

n

)
n∈N∗ converges in L1 towards µ. Hint: consider

(X+
n )n∈N∗ and (X−

n )n∈N∗ .

Strong law of large numbers with non-L1 nonnegative random variables

Let (Xn)n∈N∗ be a sequence of nonnegative i.i.d. random variables de�ned on (Ω,A,P) with E[X1] = +∞.
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21. Using the same notations as above, prove that
(
Sn

n

)
n∈N∗ converges almost surely towards +∞.

Hint: consider X ′
n = min(Xn, C) for C ∈ R.

Strong law of large numbers: L1 as a necessary condition

Let (Xn)n∈N∗ be a sequence of real-valued i.i.d. random variables de�ned on (Ω,A,P). Using the same
notations as above, assume that

(
Sn

n

)
n∈N∗ converges almost surely towards a real-valued random variable.

22. Prove that
(
Xn

n

)
n∈N∗ converges almost surely towards 0.

23. Use the second lemma of Borel-Cantelli to prove that
∑

n P(|Xn| ≥ n) < +∞.

24. Deduce that
∑

n P(|X1| ≥ n) < +∞ and that E[|X1|] < +∞.

(Bonus) Monte-Carlo methods

The law of large numbers is often used to approximate integrals through what is called a Monte-Carlo
method. The idea is to see an integral as an expected value and then to approximate that expected value
by using the empirical mean associated with an i.i.d. sample.

25. Find the value of
∫ 1

0
dx

1+x2 .

26. Deduce that if (Xn)n∈N∗ is a sequence of i.i.d. U(0, 1) random variables then, almost surely,

lim
n→+∞

4

n

n∑
k=1

1

1 +X2
k

= π.

27. Illustrate the above with a Python code.

Remark: Monte-Carlo methods are often use to approximate integrals in high dimension, in �nance for

instance.
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