
A simple CLT: de Moivre-Laplace theorem. Application to

statistics

The Central Limit Theorem (CLT) is one of the most important asymptotic results in probability theory.
Although one often refers to �the� CLT, there are in fact several versions of the theorem, each stating
� under various sets of assumptions � that the properly normalized average of a sample converges in
distribution to a Gaussian random variable. Classical formulations, such as the Lindeberg-L�evy, Lyapunov,
and Lindeberg versions of the CLT, are typically proved using characteristic functions.

In the special case of i.i.d. Bernoulli random variables, the CLT � known in this context as the de Moivre-

Laplace theorem � can be proved using Stirling's formula and classical analysis. This is the main objective
of the present problem.

It is worth noting that the CLT for i.i.d. Bernoulli random variables is often interpreted as a Gaussian
approximation to the binomial distribution � a technique frequently used in statistical applications. In
this problem, we also explore a practical application of this approximation in the context of airline
overbooking.

Towards de Moivre-Laplace theorem: a local estimate

We consider in this problem a probability space (Ω,A,P) and a sequence of i.i.d. Bernoulli B(p) random
variables (Xn)n∈N∗ (with p ∈ (0, 1)) de�ned on that probability space. We de�ne, for all n ∈ N∗, the
random variable Sn = X1 + . . .+Xn.

1. Prove that ∀k ∈ {0, . . . , n},P(Sn = k) = Ck
np

k(1− p)n−k.

We recall (see the problem on Stirling's formula) that there exists a positive constant A such that
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3. Prove that ∀n ≥ na,b, ∀k ∈ Ia,bn ,
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5. Prove that there exists B > 0 such that
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7. Prove that ∀n ≥ na,b, ∀k ∈ Ia,bn ,

k
(k − np)2

2n2p2
+ (n− k)

(k − np)2

2n2(1− p)2
=

(k − np)2

2np(1− p)
+

(k − np)3

2n2

(
1

p2
− 1

(1− p)2

)
.
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9. Conclude that there exists a sequence
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de Moivre-Laplace theorem

Let α < β be two real numbers and let us choose a = α
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Hint: Use the same idea as for proving the convergence of a Riemann sum.

2



13. Conclude that1
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Application to overbooking

14. Explain why de Moivre-Laplace theorem justi�es the approximation of a B(n, p) binomial random
variable by a N (np, np(1− p)) Gaussian random variable when n is large.2

A Paris-London �ight is operated with a 150-seat aircraft. It is known that a person buying a ticket will
show up at the airport with probability p = 75%.

The company wants to sell more than 150 tickets. Let Zn be the number of people showing up for the
�ight if n tickets are sold.

15. What is the distribution of Zn?

16. Use the Gaussian approximation to the binomial to determine (approximately) the maximum
number of tickets the company can sell to be sure (with 95% con�dence level) that there will
be enough seats in the plane for all the clients who show up (i.e. P(Zn ≤ 150) ≥ 95%)?

1This is de Moivre-Laplace theorem.
2This approximation is usually referred to as the Gaussian approximation to the binomial.
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