
The problem of points: Pascal, Fermat and the Chevalier de

M�er�e

The foundations of modern probability theory were established in the 1930s by the Russian mathematician
Kolmogorov (Êîëìîãîðîâ), as part of the broader development of the modern theory of integration
initiated by Borel, Lebesgue, Radon, and others. Of course, many important questions in probability
were posed and solved well before the formulation of Kolmogorov's axioms. The problem proposed below
is one of the seminal problems in the history of probability: the problem of points. Though its origin dates
back to medieval times, it was revived in the 17th century by the writer and salon theorist Chevalier de
M�er�e, and solved by Pascal and Fermat.

In simple terms, the problem of points is the following. Consider two players, for instance Blaise and
Pierre, each betting the same amount of money m. They play a game using a fair coin: Blaise earns
one point when the coin shows tails, and Pierre earns one point when it shows heads. The winner of the
game�who claims the pot (i.e., 2m)�is the �rst player to reach n points. However, for exogenous reasons,
they are forced to stop the game before either player has reached n points. The question is: how should

they fairly divide the pot?

The Problem of Points

We propose three di�erent methods to solve this problem. Let n− p and n− q be the respective current
scores of Blaise and Pierre when the game is halted (with p, q ∈ {1, . . . , n}). In other words, Blaise still
needs p points to win, and Pierre needs q points. Throughout, we will compute the probability Pp,q that
Blaise would have eventually won the game.

Preliminaries

1. Explain why the number of tosses necessary to determine the winner after the interruption is at
most p+ q − 1.

In what follows, in order to model the problem, we introduce p + q − 1 independent random variables
(Xk)1≤k≤p+q−1 with Bernoulli B( 12 ) distribution, where {Xk = 1} corresponds to the event �the kth toss
after the interruption would have been a tail�.1

Method I

For k ∈ {1, . . . , p + q − 1}, let us denote by Bk the event �Blaise would have won after exactly k tosses
(following the interruption)�, and by B the event �Blaise would have won�.

2. Show that B =
⋃q−1

k=0 Bp+k.

3. For k ∈ {0, . . . , q − 1}, show that

Bp+k = {X1 + . . .+Xp+k−1 = p− 1, Xp+k = 1}.

4. For k ∈ {0, . . . , q − 1}, deduce that

P(Bp+k) =
Ck

p+k−1

2p+k
.

5. Deduce that

Pp,q =

q−1∑
k=0

Ck
p+k−1

2p+k
.

1Of course, the players might not have tossed p + q − 1 coins to determine the winner, but we consider the maximum

number of tosses, assuming for instance that the players continue to toss just for fun.
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6. Let us suppose that n = 4. Compute Pp,q for (p, q) ∈ {1, 2, 3, 4}2 using the above formula.

Method II

Let S =
∑p+q−1

k=1 Xk.

7. What is the probability distribution of S?

8. Show that Pp,q = P(S ≥ p).

9. Deduce that

Pp,q =

∑q−1
k=0 C

p+k
p+q−1

2p+q−1
.

10. Let us suppose that n = 4. Compute Pp,q for (p, q) ∈ {1, 2, 3, 4}2 using the above formula.

Method III: recursion and generating function

Let us extend the de�nition of Pp,q to (p, q) ∈ N2 \ {(0, 0)} as follows:

� ∀q ∈ N∗, P0,q = 1,

� ∀p ∈ N∗, Pp,0 = 0,

� ∀p, q ∈ N∗, Pp,q is the probability that Blaise would have won had the game continued after the
interruption, if Blaise still had p points to win and Pierre q.

11. Show that

∀p, q ∈ N∗, Pp,q =
Pp−1,q + Pp,q−1

2
.

12. Compute Pp,q for (p, q) ∈ {1, 2, 3, 4}2 using the above recursive formula. Comment.

13. Let us consider the function

G : (x, y) ∈ [0, 1)2 7→ G(x, y) =

∞∑
p=1

∞∑
q=1

Pp,qx
pyq.

Explain why G is a well de�ned C∞ function.

14. Show that

∀(x, y) ∈ [0, 1)2, G(x, y) =
1

2
xG(x, y) +

1

2
yG(x, y) +

1

2

xy

1− y
.

Deduce the expression of G.

15. By using a Taylor expansion of (x, y) ∈ [0, 1)2 7→ 1
2

xy

(1−y)(1− 1
2 (x+y))

, recover an expression for Pp,q.
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