
A short promenade into the world of random walks: around

Polya's theorem

The goal of this problem is to compute, using elementary tools, the probability that a random walk on
Zd returns to its starting point. The approach developed in this problem relies heavily on power series.
Toward the end, the reader may recognize the use of the celebrated Laplace's method for obtaining
asymptotic equivalents of integrals with exponential integrands.

Notations

For d ∈ N∗, we denote by (e1, . . . , ed) the canonical basis of Rd.

For each d ∈ N∗, we consider a sequence (Xn,d)n∈N∗ of i.i.d. random variables with uniform distribution
in {e1,−e1, . . . , ed,−ed}. We assume that these random variables are independent.

For each d ∈ N∗, we then de�ne a random walk (Sn,d)n∈N by{
S0,d = 0 ∈ Zd

Sn+1,d = Sn,d +Xn+1,d, ∀n ∈ N.

Let us introduce the following notations:

pn,d = P(Sn,d = 0), ∀n ∈ N,∀d ∈ N∗,

qn,d = P(Sn,d = 0,∀m ∈ {1, . . . , n− 1}Sm,d ̸= 0), ∀n ∈ N∗, ∀d ∈ N∗,

πd = P(∃n ∈ N∗, Sn,d = 0), ∀d ∈ N∗.

From (pn,d)n∈N to πd

Let us consider d ∈ N∗.

Let us de�ne the functions

gd : x ∈ [0, 1) 7→
+∞∑
n=0

pn,dx
n and hd : x ∈ [0, 1] 7→

+∞∑
n=1

qn,dx
n.

1. Show that gd and hd are well de�ned and continuous functions.

2. Show that if the series
∑

n≥0 pn,d is convergent then limx→1− gd(x) =
∑+∞

n=0 pn,d. Show that
otherwise limx→1− gd(x) = +∞.

3. Show that πd = hd(1).

4. Show that for all n ∈ N∗,

pn,d =

n∑
k=1

qk,dpn−k,d

5. Deduce that ∀x ∈ [0, 1), gd(x) = 1 + gd(x)hd(x).

6. Prove that if the series
∑

n≥0 pn,d is convergent then πd = 1−
(∑+∞

n=0 pn,d

)−1

. Show that otherwise

πd = 1.

The case of dimension 1

We now consider the case d = 1.
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7. Show that

pn,1 =

{
0, for n odd,
Cn/2

n

2n , for n even.

8. Prove that p2n,1 ∼n→+∞
1√
nπ

.

9. What is the value of π1?

Generating functions

Let us introduce for each d ∈ N∗ the function

Gd : x ∈ R+ 7→
∑
n=0

pn,d
xn

n!
,

10. Show that Gd is well de�ned for all d ∈ N∗.

11. Prove that ∀n ∈ N, ∀d ∈ N \ {0, 1},

pn,d =

n∑
k=0

Ck
n

1

dk

(
1− 1

d

)n−k

pk,1pn−k,d−1.

12. Deduce that ∀d ∈ N∗, ∀x ∈ R+, Gd(x) = G1

(
x
d

)d
.

13. Prove that

∀d ∈ N∗, ∀x ∈ [0, 1), gd(x) =

∫ +∞

0

Gd(tx)e
−tdt.

14. Deduce that if t 7→ G1

(
t
d

)d
e−t is integrable on R+ then

πd = 1−

(∫ +∞

0

G1

(
t

d

)d

e−tdt

)−1

and that otherwise πd = 1.

Study of G1

15. Prove that

∀x ∈ R+, G1(x) =

+∞∑
n=0

1

n!2

(x
2

)2n
16. Prove by induction that

∀n ∈ N,
∫ π

2

0

cos2n(θ)dθ =
(2n)!

(2nn!)2
π

2
.

17. Prove that

∀x ∈ R+, G1(x) =
1

π

∫ π

0

exp(x cos(θ))dθ.

Hint: Prove �rst that ∀x ∈ R+, G1(x) =
2
π

∫ π
2

0
cosh(x cos(θ))dθ.

18. Prove that

∀ϵ ∈ (0, 1), ∃η > 0, ∀θ ∈ [0, η], 1− θ2

2
(1 + ϵ) ≤ cos(θ) ≤ 1− θ2

2
(1− ϵ).

19. Prove that ∀ϵ ∈ (0, 1), ∃η > 0,

ex√
x

1

π
√
1 + ϵ

∫ η
√

x(1+ϵ)

0

e−
u2

2 du ≤ 1

π

∫ π

0

exp(x cos(θ))dθ ≤ ex√
x

1

π
√
1− ϵ

∫ η
√

x(1−ϵ)

0

e−
u2

2 du+ex cos(η).
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20. Deduce that G1(x) ∼x→+∞
1√
2π

ex√
x
.

Polya's theorem and beyond

21. Prove that π1 = π2 = 1 and that 0 < πd < 1 for d ≥ 3.

22. (Bonus) Prove that πd ∼d→+∞
1
2d .
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