
Asymptotic expansions of n!: from Stirling to Gosper and beyond

The goal of this problem is to derive asymptotic formulas for n!. The �rst steps follow a classical approach,
using Wallis integrals to obtain Stirling formula. We then introduce two methods to go beyond Stirling's
approximation and derive more accurate estimates of n!.

The �rst method, based on a �rst-order asymptotic expansion using series, leads to Gosper formula.
The second method uses the Euler-Maclaurin formula to derive the full asymptotic expansion of n!,
extending beyond Stirling's approximation.

Wallis integrals

For n ∈ N, we de�ne the n-th Wallis integral by

Wn =

∫ π
2

0

cosn(x)dx.

1. Show that the sequence (Wn)n is nonincreasing.

2. By using an integration by parts, show that

∀n ∈ N, Wn+2 =
n+ 1

n+ 2
Wn.

3. Deduce that

1− 1

n+ 2
≤ Wn+1

Wn
≤ 1.

4. Prove by induction that

∀n ∈ N, W2n =
(2n)!

22n+1(n!)2
π and W2n+1 =

22n(n!)2

(2n+ 1)!
.

5. Deduce that
∀n ∈ N, WnWn+1 =

π

2(n+ 1)
.

6. Conclude that

lim
n→+∞

√
nWn =

√
π

2
.

Stirling formula

For n ∈ N∗, we de�ne

un =
n!en

nn+ 1
2

.

7. Show that

∀N ∈ N∗, log(uN ) = 1 +

N−1∑
n=1

(
1−

(
n+

1

2

)
log

(
1 +

1

n

))
.

8. Deduce that (un)n converges towards a positive number K.

9. Show that
lim

n→+∞

√
2nW2n =

π

K
.

10. Deduce that K =
√
2π.

11. Deduce the Stirling formula:

n! ∼n→+∞
√
2πn

(n
e

)n

.
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Gosper formula

12. By expanding log
(
1 + 1

n

)
in powers of 1

n , show that

∀N ∈ N∗, log(uN ) = 1 +

N−1∑
n=1

∞∑
k=2

(−1)k−1 k − 1

2k(k + 1)

1

nk
.

13. Deduce that

∀N ∈ N∗, log(uN ) =
1

2
log(2π) +

∞∑
k=2

(−1)k
k − 1

2k(k + 1)
RN (k),

where RN (k) =
∑∞

n=N
1
nk .

14. By using a comparison between series and integral, show that

∀k ≥ 2, ∀N ≥ 2,
1

k − 1

1

Nk−1
≤ RN (k) ≤ 1

k − 1

1

Nk−1
+

1

Nk
.

15. Deduce that

log(uN ) =
1

2
log(2π) +

1

12N
+O

(
1

N2

)
.

16. Deduce the Gosper formula:

n! =

√
π

(
2n+

1

3

)(n
e

)n
(
1 +O

(
1

n2

))
.

Bernoulli polynomials

17. Show that there exists a unique sequence of polynomials (Bn)n∈N such that

� B0 = 1,

� ∀n ∈ N∗, B′
n = nBn−1,

� ∀n ∈ N∗,
∫ 1

0
Bn(x)dx = 0.

18. Compute B0, B1, B2, B3, B4, B5, and B6.

19. Show that ∀n ≥ 2, Bn(1) = Bn(0).

20. Show that ∀n ∈ N, Bn(1−X) = (−1)nBn(X).

21. Deduce that ∀n ∈ N∗, B2n+1(0) = 0.

22. Compute B2(0), B4(0), and B6(0).

Euler-Maclaurin formula

For this part, let us consider r ∈ N∗ and f a function in C2r(R+).

23. Show by induction that∫ 1

0

f(x)dx =
1

2
(f(0) + f(1))−

r∑
p=1

B2p(0)

(2p)!

(
f (2p−1)(1)− f (2p−1)(0)

)
+

1

(2r)!

∫ 1

0

B2r(x)f
(2r)(x)dx.

24. Deduce that for all n ∈ N∗,∫ n

n−1

f(x)dx =
1

2
(f(n− 1) + f(n))−

r∑
p=1

B2p(0)

(2p)!

(
f (2p−1)(n)− f (2p−1)(n− 1)

)
+

1

(2r)!

∫ n

n−1

B2r(x− (n− 1))f (2r)(x)dx.
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25. Deduce the Euler-Maclaurin formula:

∀n ∈ N∗,

n∑
k=0

f(k) =

∫ n

0

f(x)dx+
1

2
(f(0) + f(n)) +

r∑
p=1

B2p(0)

(2p)!

(
f (2p−1)(n)− f (2p−1)(0)

)
− 1

(2r)!

∫ n

0

B2r(x− ⌊x⌋)f (2r)(x)dx,

where ⌊x⌋ is the largest integer smaller than x.

Asymptotic expansion of n!

26. By applying Euler-Maclaurin formula to f : x ∈ R+ 7→ log(1+x), show that there exists a constant
Cr, independent of n, such that

log(n!) =

(
n+

1

2

)
log(n)− n+ Cr +

r∑
p=1

B2p(0)

2p(2p− 1)

1

n2p−1
+O

(
1

n2r+1

)

27. Use Stirling formula to show that Cr = 1
2 log(2π).

28. Conclude that

n! =
√
2πn

(n
e

)n
(
1 +

1

12n
+

1

288n2
− 139

51840n3
− 571

2488320n4
+

163879

209018880n5
+O

(
1

n6

))
.

Key �ndings:

� Wallis integrals can be computed in closed form by induction.

� Stirling formula:

n! ∼n→+∞
√
2πn

(n
e

)n

.

� Euler-Maclaurin formula (for f a function in C2r(R+) and (Bk)k the Bernoulli polynomials):

∀n ∈ N∗,

n∑
k=0

f(k) =

∫ n

0

f(x)dx+
1

2
(f(0) + f(n)) +

r∑
p=1

B2p(0)

(2p)!

(
f (2p−1)(n)− f (2p−1)(0)

)
− 1

(2r)!

∫ n

0

B2r(x− ⌊x⌋)f (2r)(x)dx.
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