Series of random variables: Kolmogorov's three-series theorem

The goal of this problem is to prove Kolmogorov's three-series theorem. This famous theorem states necessary and sufficient conditions for the convergence of series of independent random variables:

Theorem 1 (Kolmogorov's three-series theorem). Let $(X_n)_{n\geq 0}$ be a sequence of independent random variables.

The series $\sum_{n\geq 0} X_n$ converges almost surely if and only if the three series

$$\sum_{n\geq 0}\mathbb{P}(|X_n|>1),\quad \sum_{n\geq 0}\mathbb{E}[X_n1_{|X_n|\leq 1}],\quad and\quad \sum_{n\geq 0}\mathbb{V}(X_n1_{|X_n|\leq 1})$$

converge.

The case of centered random variables in L^2

Let $(X_n)_{n\geq 0}$ be a sequence of independent L^2 random variables. We assume in this part that the random variables are centered (i.e. $\forall n \geq 0, \mathbb{E}[X_n] = 0$) and that the series $\sum_{n\geq 0} \mathbb{E}[X_n^2]$ converges.

For $n \ge 0$, we denote by S_n the sum $\sum_{k=0}^n X_k$.

Let $\epsilon > 0$. For $m \in \mathbb{N}$, we introduce $\tau_{m,\epsilon} = \inf\{k > m | |S_k - S_m| > \epsilon\}$ with the classical convention that $\inf \emptyset = +\infty$.

- 1. Prove that $\forall n > m, \mathbb{P}(|S_n S_m| \ge \epsilon) \le \frac{1}{\epsilon^2} \sum_{k=m+1}^{+\infty} \mathbb{E}[X_k^2].$
- 2. For k > m, prove that $\mathbb{P}(\tau_{m,\epsilon} = k) \leq \frac{1}{\epsilon^2} \mathbb{E}[(S_k S_m)^2 \mathbf{1}_{\tau_{m,\epsilon} = k}].$
- 3. Deduce that, for $n \ge k > m$, $\mathbb{P}(\tau_{m,\epsilon} = k) \le \frac{1}{\epsilon^2} \mathbb{E}[(S_n S_m)^2 \mathbf{1}_{\tau_{m,\epsilon} = k}].$
- 4. Deduce that $\forall m \in \mathbb{N}$,

$$\mathbb{P}(\exists k > m, |S_k - S_m| \ge \epsilon) \le \frac{1}{\epsilon^2} \sum_{j=m+1}^{+\infty} \mathbb{E}[X_j^2].$$

5. Conclude that $(S_n)_{n>0}$ converges almost surely.

A sufficient condition for convergence

Let us now consider a sequence $(X_n)_{n\geq 0}$ of independent random variables such that the three series

$$\sum_{n\geq 0} \mathbb{P}(|X_n|>1), \quad \sum_{n\geq 0} \mathbb{E}[X_n 1_{|X_n|\leq 1}], \quad \text{and} \quad \sum_{n\geq 0} \mathbb{V}(X_n 1_{|X_n|\leq 1})$$

converge.

- 6. Prove that $\sum_{n>0} X_n \mathbb{1}_{|X_n| \leq 1}$ converges almost surely.
- 7. Prove that almost surely $\{n \ge 0, X_n > 1\}$ is finite. Hint: Use Borel-Cantelli's lemma.
- 8. Conclude that $\sum_{n>0} X_n$ converges almost surely.

Cantelli's inequality and another inequality

Let us consider a random variable $Y \in L^2$ such that $\mathbb{E}[Y] = 0$. Let us consider $\lambda > 0$.

9. Prove that

$$\mathbb{P}(Y > \lambda) \le \inf_{y > 0} \frac{\mathbb{E}[(Y + y)^2]}{(\lambda + y)^2}$$

10. Deduce that $\mathbb{P}(Y > \lambda) \leq \frac{\mathbb{V}(Y)}{\mathbb{V}(Y) + \lambda^2}$.

Let us now consider a random variable $X \in L^2$ such that $\mathbb{E}[X] \ge 0$. Let us consider $\theta \in (0, 1)$.

11. Prove that

$$\mathbb{P}(X > \theta \mathbb{E}[X]) \ge \frac{(1-\theta)^2 \mathbb{E}[X]^2}{\mathbb{V}(X) + (1-\theta)^2 \mathbb{E}[X]^2}.$$

Convergence of the series of variances as a necessary condition for bounded centered random variables

In this part we consider a sequence $(X_n)_{n\geq 0}$ of independent random variables. We assume they are centered (i.e. $\forall n \geq 0, \mathbb{E}[X_n] = 0$) bounded by 1 (i.e. $\forall n \geq 0, |X_n| \leq 1$) and that the series $\sum_{n\geq 0} X_n$ converges almost surely.

For $n \ge 0$, we denote by S_n the sum $\sum_{k=0}^n X_k$ and by σ_n^2 the sum $\sum_{k=0}^n \mathbb{E}[X_k^2]$.

12. Prove that

$$\forall n \ge 0, \mathbb{E}[S_n^4] \le \sigma_n^2 + 3\sigma_n^4$$

Hint: you can get inspiration from the classical proof of the law of large numbers for L^4 variables.

13. Deduce that

$$\forall \theta \in (0,1), \forall n \ge 0, \mathbb{P}(S_n^2 \ge \theta \sigma_n^2) \ge \frac{(1-\theta)^2 \sigma_n^4}{(2+(1-\theta)^2)\sigma_n^4 + \sigma_n^2}$$

- 14. Prove that if $\sum_{n=0}^{+\infty} \mathbb{E}[X_n^2] = +\infty$ then $\mathbb{P}(\sup_{n>0} |S_n| = +\infty) > 0$.
- 15. Deduce that the series $\sum_{n>0} \mathbb{E}[X_n^2]$ is convergent.

Getting rid of the centered hypothesis

In this part we consider a sequence $(X_n)_{n\geq 0}$ of independent random variables. We assume they are bounded by 1 (i.e. $\forall n \geq 0, |X_n| \leq 1$) and that the series $\sum_{n\geq 0} X_n$ converges almost surely.

16. Prove that the series $\sum_{n\geq 0} \mathbb{V}(X_n)$ is convergent. *Hint: consider* $\left(\frac{X_n - X'_n}{2}\right)_{n\geq 0}$ where the two sequences $(X_n)_{n\geq 0}$ and $(X'_n)_{n\geq 0}$ are independent and identically distributed.

A necessary condition for convergence

In this part we consider a sequence $(X_n)_{n\geq 0}$ of independent random variables. We assume that the series $\sum_{n\geq 0} X_n$ converges almost surely.

- 17. Prove that the series $\sum_{n>0} \mathbb{P}(|X_n| > 1)$ is convergent.
- 18. Prove that $\sum_{n\geq 0} X_n \mathbb{1}_{|X_n|\leq 1}$ converges almost surely.
- 19. Deduce that the series $\sum_{n\geq 0} \mathbb{V}(X_n 1_{|X_n|\leq 1})$ converges.
- 20. Deduce that the series $\sum_{n>0} \mathbb{E}[X_n 1_{|X_n| \leq 1}]$ converges.
- 21. Conclude.